Micromechanics of Materials using High Energy XRD

Ersan Üstündag

Ames Laboratory and Department of Materials Science and Engineering, Iowa State University

Collaborators

Rob Rogan, Jay Hanan, Can Aydiner and Seung-Yub Lee
Department of Materials Science, California Institute of Technology

Dean Haeffner, Jon Almer, Ulrich Lienert and Doug Robinson Advanced Photon Source, Argonne National Laboratory

Irene Beyerlein* and Sivasambu Mahesh

*Theoretical and Materials Science and Technology Divisions, Los Alamos National Laboratory

Mark Daymond

ISIS Neutron Facility, Rutherford Appleton Laboratory (U.K.)

Supported by NSF (CAREER and MRSEC), DARPA, ARO and DOE

Fracture of a Fiber Composite under Tension

- Aim: prediction of strength and lifetime
- Need: "realistic" constitutive laws

Complications

- Fabrication processes
- Inhomogeneous dislocation densities
- Changes in grain size
- Geometrical constraints
- Interface introduced with different properties
- Residual stresses

Motivation and Approach

- Little information about deformation and constitutive behavior of materials at multiple length scales.
- Need to link experimental data with rigorous micromechanics modeling.
- Approach: Use X-ray microdiffraction to investigate deformation in materials and complement it with modeling.
- Critical issues:
 - Need for model specimens
 - "High selectivity" of diffraction
 - Only elastic lattice strains are measured with diffraction
 - Lack of "realistic" constitutive laws to calculate stress and interpret diffraction data

Advantages of XRD

- Non-destructive.
- Ability to distinguish different phases.
- Can measure elastic strain and texture.
- Simultaneous <u>strain</u> and <u>imaging</u> capability.
- Multi-scale: nm to cm.
- Deep penetration.
- In-situ experiment capability.
 - ⇒ Determination of *in-situ* constitutive behavior

Bragg's law:

 $\lambda = 2dsin\theta$

Differences in lattice spacing

⇒ Elastic lattice strain

$$\boldsymbol{\varepsilon}_{hkl}^{el} = \frac{d_{hkl} - d_{hkl}^{0}}{d_{hkl}^{0}} = \frac{d_{hkl}}{d_{hkl}^{0}} - 1$$

High Energy 2-D XRD Experimental Setup

Digital image plate

Cr

Critical Issues with High Energy 2-D XRD:

Diffractometer

- Deep penetration
- Complete Debye rings captured
- 2-D strain tensor
- Small θ values (i.e., high strain error):
 - > Sensitive to displacement error
 - Need to employ internal standard

Bragg's Law:

 $\lambda = 2 d \sin \theta$

 2θ

Model Composite: Ti-6Al-4V / SiC (SCS-6)

- Uniaxial tensile testing
- Damage evolution study using XRD (65 keV)
- Complete penetration
- 90 x 90 μm² spot size

∭∭ σ

- Laminar composite: Ideal for model comparison
- 140 µm in diameter fibers; 240 µm average center-tocenter distance
- 200 µm thick matrix
- Data collected with a digital image plate

Multi-Fiber Deformation Model*

- Shear lag model for 2-D fiber composites
- Accounts for matrix sustaining elastic tensile and shear stresses (first shear lag model to do so)
- Allows for multiple fiber and matrix breaks
- Computationally faster for many breaks
- Assumes elastic deformation only

* I.J. Beyerlein and C. M. Landis, *Mechanics of Materials*, 1999; 31: 331.

Matrix Stiffness Shear Lag (MSSL) Model Predictions

(i)-intact matrix (ii)-broken matrix

With ρ = 0.289 for both one and two broken fibers

Location of Diffracting Grains

- Ti grain size ~29 μm:
 - Few diffracting grains.
- SiC grain size ~0.2 μm:
 - Continuous grain map.
- Use of full Debye rings to obtain more matrix data.

Finite Element Predictions

Unloading Strains in Fibers Compared to the MSSL Model

Ti-SiC

Left Side of the Damage Zone:

Right Side of the Damage Zone:

- Good fit with 'intact matrix' case.
- Unloading strains were used due to plasticity in matrix.
- Right hand side data suggests interface debonding.

Unloading Strains in the Matrix Compared to the MSSL Model

Ti-SiC

Matrix between two intact fibers:

Matrix around damage zone:

- Better fit with 'intact matrix' case.
- ρ = 0.290 appears to be a more realistic value.
- Matrix data comes from few grains.

Matrix Strains Using Image Plate

IOWA STATE UNIVERSITYFiber Label

- Multi-axis strain data
- Significant strain concentrations in matrix

σ

 σ = 850 MPa

Transverse Thermal Residual Strain from FEM

Change in Matrix *Axial* Residual Strain due to Loading

Ti-SiC

 The compressive regions identify plastic deformation while loading the composite

Micromechanics of Composites: Conclusions

- High energy XRD allows rigorous validation of advanced micromechanics models.
- Detailed stress/strain and structure data can be collected at the microstructure scale.
- Possibilities now exist for extensive studies under various loading conditions.
- Composite field will benefit tremendously from combined diffraction and imaging capabilities.

Constitutive Behavior of Ferroelectric Materials

= 1.065

Six equivalent <001>_{cubic} directions give six equivalent states at room temperature

- Poling in large electric fields aligns crystallite polarizations through a process called "ferroelectric switching".
- Applied stress causes de-poling and 90° domain switching.
- Fundamental understanding of the details of domain micromechanics is crucial for accurate modeling of ferroelectrics.

Self-Consistent Modeling of Ferroelectrics

Fig. 2. The progressive nature of ferroelectric transformation within a crystal due to domain wall motion.

- Domain switching within a single crystal (grain).
- Each of M (=6) variants can transform into any of the remaining M-1 (=5) variants: total of 30 transformations (90° and 180 ° switches).
- Domain wall motion is dissipative (similar to dislocation motion).
- Stress (σ_{ii}) and electric field (E_i) are uniform in the crystal.
- There is no hardening.
- Dislocation plasticity is neglected.

Huber, J.E., Fleck, N.A., Landis, C.M. and McMeeking, R.M., *J. Mech. & Phys. Sol.*, **47** (1999) 1663-1697.

Constitutive Behavior of Polycrystalline Pb(Zr,Ti)O₃

- Studied electromechanical response of polycrystalline Pb(Zr,Ti)O₃
- Employed neutron diffraction and high energy XRD
- Diffraction yields hkl dependent strains and texture data, information crucial for modeling

Neutron Diffraction: Lattice Strain Evolution in Two Phase Pb(Zr,Ti)O₃*

^{*} R.C. Rogan, E. Üstündag, B. Clausen, M.R. Daymond, J. Appl. Phys. 93[7], 4104-4111 (2003).

Neutron Diffraction: Experimental Setup at ISIS

- +90° (left) bank observes <u>transverse</u> sample behavior
- −90° (right) bank observes <u>axial</u> sample behavior
- Very limited detector coverage and slow data collection

High Energy XRD at APS Sector 1: 2-D Data

- Samples were electrically poled under sequentially increasing static fields while taking X-ray patterns.
- Results indicate a severe dependence on η and a critical coercive field of ~0.3 kV/mm.

High Energy XRD at APS Sector 1: 2-D Data

- After poling, samples were cycled through positive and negative ranges.
- The typical "butterfly" curve was observed for each azimuthal angle.
- By "caking" 36 virtual detectors were generated to allow a wide coverage of reciprocal space.

R.C. Rogan, E. Üstündag, M.R. Daymond and U. Lienert, submitted to *J. Appl. Phys.* (2004).

Angular Dependence of Strain Behavior

By defining various "spans" the data may be broken down as a function of angle

Lienert, submitted to J. Appl. Phys. (2004).

3-D XRD: Domains in a Single Grain of Polycrystalline BaTiO₃

- Cycled electric field on a prepoled BaTiO₃
- Monitored evolution of domain volume fractions and strain within individual grains
- Critical information for 3-D FEM of ferroelectrics

- ▶ Domain switching occurs at a low field ($E_c \sim 0.5 \text{ kV/mm}$)
- At higher fields spot separation and rotation increases (3-D lattice strain)

Constitutive Behavior of Ferroelectrics: Conclusions

- High energy XRD is ideal for micromechanics studies on ferroelectrics.
- Fast electromechanical loading allows *in-situ* investigation of constitutive response.
- 2-D strain and texture data yield multiaxial information about material behavior.
- Development of 3-D XRD capability at APS will add mesoscale capability.
- It is possible to perform detailed multiscale, multiaxial studies of ferroelectric micromechanics at APS.

